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Unprecedented aryl transfer from boron to zinc generated
Zn(mes)2, the structure of which revealed a linear, two
coordinate metal in which there is no stabilisation by inter-
or intramolecular interactions.

Since the synthesis of diethylzinc in 1848 by Edward Franklin,1

many applications of organozinc compounds in synthesis and
catalysis have been documented. Detailed structural inform-
ation concerning the extent of coordination and association in
these species is important in understanding their physical
behaviour and chemical reactivity. Gas-phase electron diffrac-
tion studies of the simple dialkyl species ZnMe2, ZnEt2 and
ZnnPr2 indicated that the structures were monomeric, with
weak attraction between the zinc and the terminal methyl-
substituents in the n-propyl derivative.2 Solid-state X-ray struc-
tural analyses of 2-coordinate organozinc complexes were
initially limited to compounds incorporating kinetically stabilis-
ing bulky groups, many related to the ‘trisyl’ carbanion
[(Me3Si)3C]�, including homoleptic,3 mixed,4 and linked ligand
systems.5 Diorganozinc compounds have also been treated with
crown ethers to give structurally characterised organorotaxane
species, including ZnEt2(18-crown-6) 6 and ZnPh2(18-crown-6).7

The importance of diarylzinc complexes is readily apparent
from their continued use as reagents in synthesis and catalysis.
For example, the homoleptic biaryl complex, ZnPh2, has been
used as a catalyst in the ring-opening of cyclic esters 8 and is
incorporated as a component in the “diphenylzinc-additive
initiator” system (ZnPh2 � metallocene � MAO) for the poly-
merisation of olefins.9 The molecular structure of diphenylzinc
was first determined in 1990.10 In the solid state, the ZnPh2

fragments are associated into unsymmetrical dimers, [PhZn-
(µ-Ph)2ZnPh], that are linked by further weaker interactions
into tetrameric units (Fig. 1). In contrast, the fluorinated aryl
complexes Zn(ArF)2 (ArF = C6F5

11 and 2,4,6-(CF3)3C6H2 ≡
Fmes 12) comprise monomeric units, in which weak inter-
molecular Zn � � � F interactions are present (vide infra).

During the course of our studies into the application of the
[OB(mes)2]

� boroxide anion as a ligand,13 we have demon-
strated that the protonolysis reaction between dimesityl borinic
acid and dimethylzinc affords the zinc boroxide species,
[Zn{OB(mes)2}Me]2.

14 At room temperature this compound is
stable towards further protonolysis by a second equivalent of
(mes)2BOH. At elevated temperature however, a mixture of the
cyclic trimer [mesBO]3 and dimesitylzinc (1) 15 is formed, most
probably according to eqn. (1). † 

Fig. 1 Association of ‘ZnPh2’ units in the solid state structure of
diphenylzinc.

To our knowledge, this is the first report of the transfer of an
aryl group from boron to a metal centre, although related
‘dearylation’ of dimesitylborinic acid to afford the cyclic ester
has been observed with aluminium.16 In this case however, the
boroxide species [Al{µ-OB(mes)2}Me2]2 catalyses formation of
[mesBO]3, and mesitylene was identified as the second product
of the reaction. Long needles were selected from the mixture,‡
and shown by an X-ray structure determination to be dimesityl-
zinc. §

The asymmetric unit of 1 consists of one mesityl group
bonded to zinc, which is related to the second substituent by an
inversion centre (Fig. 2). Consequently, the C(1)–Zn–C(1�) is
strictly linear and the two aryl groups are coplanar with respect
to each other. No such symmetry is present in the related
fluorinated aryl compounds Zn(C6F5)2 and Zn(Fmes)2, result-
ing in ArF–Zn–ArF angles of 172.6(2)� and 170.0(1)� respect-
ively. The zinc–carbon bond length in 1 [1.942(2) Å] is longer
than the average values for the homoleptic (C6F5) [1.928(4) Å]
compound, and directly comparable with the Fmes derivative
[1.949(3) Å].

The orientation of the aryl groups in 1 is markedly different
from those in the fluoroaryl derivatives. The C6 rings of the
Fmes compound are twisted by 67.1� and in the pentafluoro-
phenyl analogue by 76.7�. In the former case the orientation
minimises the steric congestion and electrostatic repulsion
between the ortho-CF3 groups, and in the latter compound, the
rotation appears to be dictated by intermolecular stacking
interactions between adjacent molecules [distance between
centroids of the C6F5 rings = 3.503 Å and 3.563 Å]. In each of
the ArF compounds, the coordination number of the zinc is
increased beyond 2 by further Zn � � � F interactions which are
shorter than the sum of the van der Waals radii of the constitu-
ent atoms [2.9 Å–3.0 Å]. In the C6F5 derivative, the zinc is close
to a meta-fluorine of an adjacent molecule [2.849(2) Å], and in

(1)

Fig. 2 Molecular structure of 1 (thermal ellipsoids 30%; �: �x, �y,
�z) with selected bond distances (Å) and angles (�): Zn–C(1)
1.9422(19); C(1)–Zn–C(1�) 180.
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the Fmes compound, intramolecular interactions from the
ortho-CF3 groups are noted [2.532(6) Å–2.733(6) Å]. There are
however no such secondary interactions in 1, with the closest
intramolecular distances between zinc and ortho-CH3 in the
range 3.00 Å–3.24 Å, considerably greater than the sum of the
van der Waals radii [2.6 Å].

The planar Zn(mes)2 molecules are arranged in a series of
staggered layers, displaced such that the zinc atom of one mole-
cule is located approximately equidistant between the  mesityl
centroids in the layer above and below (Fig. 3). The inter-
molecular distances between the zinc and the carbon atoms of
the phenyl groups [3.725 Å–3.869 Å] are too large to be con-
sidered as denoting a bonding interaction. In the solid state
therefore, the zinc atom is effectively enclosed by the layered
structure, in addition to the ortho-methyl substituents, main-
taining the strictly 2-coordinate geometry at zinc (Fig. 4). The
steric bulk of the mesityl substituents is also sufficient to
prevent interaction of the Cipso-atom with the zinc from a
neighbouring molecule, as observed in the [ZnPh2]2 dimer.

In summary, we have observed an unprecedented aryl-
transfer from boron to zinc during the reaction between
(mes)2BOH and ZnMe2, affording [mesBO]3 and Zn(mes)2 (1).
In contrast to the molecular structure of other diarylzinc com-
plexes, the zinc centre in dimesitylzinc is strictly two-coordinate
with no inter- or intramolecular stabilisation. The stability of
this low-coordinate metal centre reflects the protection afforded
by the mesityl substituents.
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Fig. 3 View of the interpenetrating staggered layer structure in the
unit cell of 1.

Fig. 4 Space filling diagram of (A) the layered structure and (B) ortho-
protection of the zinc centres within 1.
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Notes and references
† A solution of (mes)2BOH (0.500 g, 1.88 mmol) in toluene (15 mL)
was added dropwise at room temperature to a stirred solution of
ZnMe2 (0.47 mL of 2 M solution in toluene, 0.94 mmol) which had
been further diluted with an additional 10 mL toluene. The mixture was
stirred overnight at room temperature and subsequently heated at reflux
for 5 h. Removal of the volatiles afforded a white solid that was shown
by 1H NMR spectroscopy (C6D6, 298 K) to comprise Zn(mes)2, δ 6.82
(Ar), 2.38 (o-Me), 2.23 (p-Me) and [mesBO]3, δ 6.76 (Ar), 2.50 (o-Me),
2.13 (p-Me) in an approximate molar ratio of 1 : 1. Recrystallisation
from toluene afforded colourless needles {Zn(mes)2} and blocks
{[mesBO]3} that were mechanically separated.
‡ Dimesitylzinc crystallises as very long needles. When cut, the needles
splinter and fragment lengthwise. It was impossible to obtain a clean
short fragment and for the data collection a rather long piece, clear in
the middle and frayed at the ends, was used.
§ C18H22Zn, M = 303.73, T = 223(2) K, monoclinic, space group P21/n
(No. 14), a = 4.9926(2), b = 10.1948(3), c = 15.1331(5) Å, β = 96.618(1)�,
U = 765.12(5) Å3, Z = 2, Dc = 1.32 Mg m�3, µ(Mo-Kα) = 1.59 mm�1,
independent reflections = 1303 (Rint = 0.041), R1 [for 1154 reflections
with I > 2σ(I )] = 0.030, wR2 (all data) = 0.086. CCDC reference number
217302. See http://www.rsc.org/suppdata/dt/b3/b309709a/ for crystallo-
graphic data in CIF or other electronic format.
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